Author:
Falgas-Ravry Victor,Markström Klas,Zhao Yi
Abstract
AbstractWe investigate a covering problem in 3-uniform hypergraphs (3-graphs): Given a 3-graph F, what is c1(n, F), the least integer d such that if G is an n-vertex 3-graph with minimum vertex-degree
$\delta_1(G)>d$
then every vertex of G is contained in a copy of F in G?We asymptotically determine c1(n, F) when F is the generalized triangle
$K_4^{(3)-}$
, and we give close to optimal bounds in the case where F is the tetrahedron
$K_4^{(3)}$
(the complete 3-graph on 4 vertices).This latter problem turns out to be a special instance of the following problem for graphs: Given an n-vertex graph G with
$m> n^2/4$
edges, what is the largest t such that some vertex in G must be contained in t triangles? We give upper bound constructions for this problem that we conjecture are asymptotically tight. We prove our conjecture for tripartite graphs, and use flag algebra computations to give some evidence of its truth in the general case.
Publisher
Cambridge University Press (CUP)
Subject
Applied Mathematics,Computational Theory and Mathematics,Statistics and Probability,Theoretical Computer Science
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献