A generalization of Bondy’s pancyclicity theorem

Author:

Draganić Nemanja,Munhá Correia David,Sudakov Benny

Abstract

Abstract The bipartite independence number of a graph $G$ , denoted as $\tilde \alpha (G)$ , is the minimal number $k$ such that there exist positive integers $a$ and $b$ with $a+b=k+1$ with the property that for any two disjoint sets $A,B\subseteq V(G)$ with $|A|=a$ and $|B|=b$ , there is an edge between $A$ and $B$ . McDiarmid and Yolov showed that if $\delta (G)\geq \tilde \alpha (G)$ then $G$ is Hamiltonian, extending the famous theorem of Dirac which states that if $\delta (G)\geq |G|/2$ then $G$ is Hamiltonian. In 1973, Bondy showed that, unless $G$ is a complete bipartite graph, Dirac’s Hamiltonicity condition also implies pancyclicity, i.e., existence of cycles of all the lengths from $3$ up to $n$ . In this paper, we show that $\delta (G)\geq \tilde \alpha (G)$ implies that $G$ is pancyclic or that $G=K_{\frac{n}{2},\frac{n}{2}}$ , thus extending the result of McDiarmid and Yolov, and generalizing the classic theorem of Bondy.

Publisher

Cambridge University Press (CUP)

Reference36 articles.

1. Counting Hamilton decompositions of oriented graphs;Ferber;Int. Math. Res. Notices,2018

2. Recent advances on the Hamiltonian problem: Survey III;Gould;Graph Comb.,2014

3. [31] Kühn, D. and Osthus, D. (2014) Hamilton cycles in graphs and hypergraphs: an extremal perspective. In Proceedings of the International Congress of Mathematicians—Seoul 2014. Vol. IV, pp. 381–406. Kyung Moon Sa, Seoul.

4. Pancyclicity of Hamiltonian graphs;Draganić;J. Eur. Math. Soc.

5. Pancyclic graphs I;Bondy;J. Comb. Theory Ser. B,1971

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3