An Analysis of the Height of Tries with Random Weights on the Edges

Author:

BROUTIN N.,DEVROYE L.

Abstract

We analyse the weighted height of random tries built from independent strings of i.i.d. symbols on the finite alphabet {1, . . .d}. The edges receive random weights whose distribution depends upon the number of strings that visit that edge. Such a model covers the hybrid tries of de la Briandais and the TST of Bentley and Sedgewick, where the search time for a string can be decomposed as a sum of processing times for each symbol in the string. Our weighted trie model also permits one to study maximal path imbalance. In all cases, the weighted height is shown to be asymptotic toclognin probability, wherecis determined by the behaviour of thecoreof the trie (the part where all nodes have a full set of children) and the fringe of the trie (the part of the trie where nodes have only one child and formspaghetti-like trees). It can be found by maximizing a function that is related to the Cramér exponent of the distribution of the edge weights.

Publisher

Cambridge University Press (CUP)

Subject

Applied Mathematics,Computational Theory and Mathematics,Statistics and Probability,Theoretical Computer Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Weighted height of random trees;Acta Informatica;2008-04-26

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3