Developing and evaluating predictive conveyor belt wear models

Author:

Webb CallumORCID,Sikorska JoannaORCID,Khan Ramzan NazimORCID,Hodkiewicz MelindaORCID

Abstract

Abstract Conveyor belt wear is an important consideration in the bulk materials handling industry. We define four belt wear rate metrics and develop a model to predict wear rates of new conveyor configurations using an industry dataset that includes ultrasonic thickness measurements, conveyor attributes, and conveyor throughput. All variables are expected to contribute in some way to explaining wear rate and are included in modeling. One specific metric, the maximum throughput-based wear rate, is selected as the prediction target, and cross-validation is used to evaluate the out-of-sample performance of random forest and linear regression algorithms. The random forest approach achieves a lower error of 0.152 mm/megatons (standard deviation [SD] = 0.0648). Permutation importance and partial dependence plots are computed to provide insights into the relationship between conveyor parameters and wear rate. This work demonstrates how belt wear rate can be quantified from imprecise thickness testing methods and provides a transparent modeling framework applicable to other supervised learning problems in risk and reliability.

Publisher

Cambridge University Press (CUP)

Subject

General Earth and Planetary Sciences,General Environmental Science

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3