Machine learning approaches to identify and design low thermal conductivity oxides for thermoelectric applications

Author:

Tewari AbhishekORCID,Dixit Siddharth,Sahni Niteesh,Bordas Stéphane P.A.

Abstract

Abstract The search space for new thermoelectric oxides has been limited to the alloys of a few known systems, such as ZnO, SrTiO3, and CaMnO3. Notwithstanding the high power factor, their high thermal conductivity is a roadblock in achieving higher efficiency. In this paper, we apply machine learning (ML) models for discovering novel transition metal oxides with low lattice thermal conductivity ( $ {k}_L $ ). A two-step process is proposed to address the problem of small datasets frequently encountered in material informatics. First, a gradient-boosted tree classifier is learnt to categorize unknown compounds into three categories of $ {k}_L $ : low, medium, and high. In the second step, we fit regression models on the targeted class (i.e., low $ {k}_L $ ) to estimate $ {k}_L $ with an $ {R}^2>0.9 $ . Gradient boosted tree model was also used to identify key material properties influencing classification of $ {k}_L $ , namely lattice energy per atom, atom density, band gap, mass density, and ratio of oxygen by transition metal atoms. Only fundamental materials properties describing the crystal symmetry, compound chemistry, and interatomic bonding were used in the classification process, which can be readily used in the initial phases of materials design. The proposed two-step process addresses the problem of small datasets and improves the predictive accuracy. The ML approach adopted in the present work is generic in nature and can be combined with high-throughput computing for the rapid discovery of new materials for specific applications.

Publisher

Cambridge University Press (CUP)

Subject

General Earth and Planetary Sciences,General Environmental Science

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3