Zero-electron-mass limit of the compressible Navier–Stokes–Poisson equations with well/ill-prepared initial data

Author:

Li Yeping,Liao JieORCID

Abstract

In this study, we consider the viscous compressible Navier–Stokes–Poisson equations, which consist of the balance laws for electron density and moment, and a Poisson equation for the electrostatic potential. The limit of vanishing electron mass of this system with both well/ill-prepared initial data on the whole space is rigorously justified within the framework of local smooth solution. We first make use of the symmetric hyperbolic–parabolic structure of the compressible Navier–Stokes–Poisson equation to obtain uniform estimate in the short time, by which we show uniform existence of local classical solution to the compressible Navier–Stokes–Poisson equation in $\mathbb {R}^d(d\geq 1)$ . Further, with uniform estimate of time derivatives, we show the zero-electron-mass limit of the solutions for the compressible Navier–Stokes–Poisson equation with well-prepared initial data in $\mathbb {R}^d(d\geq 1)$ by using Aubin's lemma. A detailed spectral analysis on the linearized system is done so that we are able to prove the zero-electron-mass limit of the solutions with ill-prepared initial data in $\mathbb {R}^d(d\geq 3)$ , where the convergence occurs away from the time $t=0$ . Finally, note that the dissipation mechanism for the linearized compressible Navier–Stokes–Poisson system is different from that of the compressible Euler equations in Grenier (Commun. Partial Diff. Eqns.21 (1996), 363–394); Grenier (Commun. Pure Appl. Math.50 (1997), 821–865); Ukai (J. Math. Kyoto Univ.26 (1986), 323–331), or that of the compressible Euler–Poisson equations in Ali and Chen (Nonlinearity24 (2011), 2745–2761), since its eigenvalues are somehow similar to that of heat equation, and the fundamental solution contains a part behaving like the heat kernel, thus a big difficulty is the singularity of the heat kernel at $t=0$ .

Publisher

Cambridge University Press (CUP)

Subject

General Mathematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3