On some nonlinear Schrödinger equations in ℝ N

Author:

Wei Juncheng,Wu YuanzeORCID

Abstract

In this paper, we consider the following nonlinear Schrödinger equations with the critical Sobolev exponent and mixed nonlinearities: \[\left\{\begin{aligned} & -\Delta u+\lambda u=t|u|^{q-2}u+|u|^{2^{*}-2}u\quad\text{in }\mathbb{R}^{N},\\ & u\in H^{1}(\mathbb{R}^{N}), \end{aligned}\right.\] where $N\geq 3$ , $t>0$ , $\lambda >0$ and $2< q<2^{*}=\frac {2N}{N-2}$ . Based on our recent study on the normalized solutions of the above equation in [J. Wei and Y. Wu, Normalized solutions for Schrodinger equations with critical Sobolev exponent and mixed nonlinearities, e-print arXiv:2102.04030[Math.AP].], we prove that (1) the above equation has two positive radial solutions for $N=3$ , $2< q<4$ and $t>0$ sufficiently large, which gives a rigorous proof of the numerical conjecture in [J. Dávila, M. del Pino and I. Guerra. Non-uniqueness of positive ground states of non-linear Schrödinger equations. Proc. Lond. Math. Soc. 106 (2013), 318–344.]; (2) there exists $t_q^{*}>0$ for $2< q\leq 4$ such that the above equation has ground-states for $t\geq t_q^{*}$ in the case of $2< q<4$ and for $t>t_4^{*}$ in the case of $q=4$ , while the above equation has no ground-states for $0< t< t_q^{*}$ for all $2< q\leq 4$ , which, together with the well-known results on ground-states of the above equation, almost completely solve the existence of ground-states, except for $N=3$ , $q=4$ and $t=t_4^{*}$ . Moreover, based on the almost completed study on ground-states to the above equation, we introduce a new argument to study the normalized solutions of the above equation to prove that there exists $0<\overline {t}_{a,q}<+\infty$ for $2< q<2+\frac {4}{N}$ such that the above equation has no positive normalized solutions for $t>\overline {t}_{a,q}$ with $\int _{\mathbb {R}^{N}}|u|^{2}{\rm d}x=a^{2}$ , which, together with our recent study in [J. Wei and Y. Wu, Normalized solutions for Schrodinger equations with critical Sobolev exponent and mixed nonlinearities, e-print arXiv:2102.04030[Math.AP].], gives a completed answer to the open question proposed by Soave in [N. Soave. Normalized ground states for the NLS equation with combined nonlinearities: The Sobolev critical case. J. Funct. Anal. 279 (2020) 108610.]. Finally, as applications of our new argument, we also study the following Schrödinger equation with a partial confinement: \[\left\{ \begin{aligned} & -\Delta u+\lambda u+(x_1^{2}+x_2^{2})u=|u|^{p-2}u\quad\text{in }\mathbb{R}^{3},\\ & u\in H^{1}(\mathbb{R}^{3}),\quad \int_{\mathbb{R}^{3}}|u|^{2}{\rm d}x=r^{2}, \end{aligned}\right.\] where $x=(x_1,x_2,x_3)\in \mathbb {R}^{3}$ , $\frac {10}{3}< p<6$ , $r>0$ is a constant and $(u, \lambda )$ is a pair of unknowns with $\lambda$ being a Lagrange multiplier. We prove that the above equation has a second positive solution, which is also a mountain-pass solution, for $r>0$ sufficiently small. This gives a positive answer to the open question proposed by Bellazzini et al. in [J. Bellazzini, N. Boussaid, L. Jeanjean and N. Visciglia. Existence and Stability of Standing Waves for Supercritical NLS with a Partial Confinement. Commun. Math. Phys. 353 (2017), 229–251].

Publisher

Cambridge University Press (CUP)

Subject

General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3