Author:
Gao Ying,Bin Jianhui,Haffa Daniel,Kreuzer Christian,Hartmann Jens,Speicher Martin,Lindner Florian H.,Ostermayr Tobias M.,Hilz Peter,Rösch Thomas F.,Lehrack Sebastian,Englbrecht Franz,Seuferling Sebastian,Gilljohann Max,Ding Hao,Ma Wenjun,Parodi Katia,Schreiber Jörg
Abstract
We report on a target system supporting automated positioning of nano-targets with a precision resolution of $4~\unicode[STIX]{x03BC}\text{m}$ in three dimensions. It relies on a confocal distance sensor and a microscope. The system has been commissioned to position nanometer targets with 1 Hz repetition rate. Integrating our prototype into the table-top ATLAS 300 TW-laser system at the Laboratory for Extreme Photonics in Garching, we demonstrate the operation of a 0.5 Hz laser-driven proton source with a shot-to-shot variation of the maximum energy about 27% for a level of confidence of 0.95. The reason of laser shooting experiments operated at 0.5 Hz rather than 1 Hz is because the synchronization between the nano-foil target positioning system and the laser trigger needs to improve.
Publisher
Cambridge University Press (CUP)
Subject
Nuclear Energy and Engineering,Nuclear and High Energy Physics,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials
Cited by
31 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献