Rayleigh–Taylor instability analysis of targets with a low-density ablation layer

Author:

SANZ J.,BETTI R.,GONCHAROV V.N.

Abstract

Irregularities on the outer surface of Inertial Confinement Fusion (ICF) capsules accelerated by laser irradiation are amplified by the Rayleigh–Taylor instability (RTI), which occurs at the ablation front (ablative RTI), where density gradient and acceleration have the same direction. The analytic stability theory of subsonic ablation fronts, for Froude number larger than one, shows that the main stabilization mechanisms are blowoff convection (rocket effect equilibrating the gravity force) and ablation (Sanz 1994; Betti et al. 1996). Blowoff convection and ablation are enhanced if the ablator material is mixed with high-Z dopants. The latest enhances radiation emission setting the ablator on a higher adiabat, lowering its density, and increasing the ablation velocity. When such an ablator is used to push a solid deuterium-tritium (D–T) shell, the D–T-ablator interface becomes classically unstable. The aim of this paper is to investigate the stability of such a configuration, represented by a low-density ablator pushing a heavier shell, and study the interplay between the classical and ablative RTIs occurring simultaneously. The stability analysis is carried out using a sharp boundary model (Piriz et al. 1997), which contains all the basic physics of the RTI in ICF.

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Condensed Matter Physics,Atomic and Molecular Physics, and Optics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3