Author:
Liu M.-P.,Xie B.-S.,Huang Y.-S.,Liu J.,Yu M.Y.
Abstract
AbstractThe formation of collisionless electrostatic shock (CES) and ion acceleration in thin foils irradiated by intense laser pulse is investigated using particle-in-cell simulation. The CES can appear in the expanding plasma behind the foil when self-induced transparency occurs. The transmitting laser pulse can expel target-interior electrons, in addition to the electrons from the front target surface. The additional hot electrons lead to an enhanced and spatially-extended sheath field behind the foil. As the CES propagates in the plasma, it also continuously forward-reflects many of the upstream ions to higher energies. The latter ions are further accelerated by the enhanced sheath field and can overtake and shield the target-normal sheath accelerated ions. The energy gain of the CES accelerated ions can thus be considerably higher than that of the latter.
Subject
Electrical and Electronic Engineering,Condensed Matter Physics,Atomic and Molecular Physics, and Optics
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献