Transport of electron beams and stability of optical windows in high-power e-beam-pumped krypton fluoride lasers

Author:

ZVORYKIN V.D.,ARLANTSEV S.V.,BAKAEV V.G.,RANTSEV O.V.,SERGEEV P.B.,SYCHUGOV G.V.,TSERKOVNIKOV A.Yu.

Abstract

Two of the key issues of a krypton fluoride (KrF) laser driver for inertial fusion energy are the development of long life, high transparency pressure foils (to isolate vacuum in the electron beam diode from a working gas in the laser chamber), and the development of durable, stable, optical windows. Both of these problems have been studied on the single-pulse e-beam-pumped KrF laser installation GARPUN. We have measured the transport of electron beams (300 keV, 50 kA, 100 ns, 10 × 100 cm) through aluminum-beryllium and titanium foils and compared them with Monte Carlo numerical calculations. It was shown that 50-μm thickness Al-Be and 20-μm Ti foils had equal transmittance. However, in contrast to Ti foil, whose surface was strongly etched by fluorine, no surface modification nor fatal damages were observed for Al-Be foils after ∼1000 laser shots and protracted fluorine exposure. We also measured the 8% reduction in the transmission of CaF2 windows under irradiation by scattered electrons when they were set at 8.5 cm apart from the e-beam-pumped region. However an applied magnetic field of ∼0.1 T significantly reduced electron scattering both across and along the laser cell at typical pumping conditions with 1.5 atm pressure working gas. Thus the e-beam-induced absorption of laser radiation in optical windows might be fully eliminated in an e-beam-pumping scheme with magnetic field guiding.

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Condensed Matter Physics,Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3