Author:
Burdonsky I. N.,Velikovich A. L.,Gavrilov V. V.,Gol'tsov A. Yu.,Zhuzhukalo E. V.,Kovalsky N. G.,Liberman M. A.,Pergament M. I.
Abstract
Experimental studies of the ablative acceleration of thin foils as carried out on the “Mishen” device (Nd laser, λ = 1·06μm, 3 nsec pulses) are reported. The plasma corona in the range of power densities 1013–1014 W/cm2 is shown to absorb 80–90% of the laser beam energy, the classical collisional absorption mechanism being the main one. Jet-like and filamentary structures are observed in the laser-plasma interaction; however, the main plasma parameters are found to be independent of the presence (or absence) of such structures. The measured hydrodynamic efficiency of stable ablative acceleration in plane geometry is ≲5%. The production of high-speed cumulative jets with irradiated thin-wall hollow conical targets is reported as an example of a non-traditional ablative acceleration geometry.
Subject
Electrical and Electronic Engineering,Condensed Matter Physics,Atomic and Molecular Physics, and Optics
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献