A credible pathway for heavy ion driven target fabrication and injection

Author:

GOODIN D.T.,NOBILE A.,ALEXANDER N.B.,BROWN L.C.,MAXWELL J.L.,PULSIFER J.,SCHWENDT A.M.,TILLACK M.,WILLMS R.S.

Abstract

The Target Fabrication Facility (TFF) of an inertial fusion energy (IFE) power plant must supply about 500,000 targets per day. The target is injected into the target chamber at a rate of 5–10 Hz and tracked precisely so the heavy ion driver beams can be directed to the target. The feasibility of developing successful fabrication and injection methodologies at the low cost required for energy production (about $0.25/target, approximately 104 times less than current costs) is a critical issue for inertial fusion energy. A significant program is underway to develop the high-volume methods to supply economical IFE targets. This article reviews the requirements for heavy ion driven IFE target fabrication and injection, and presents the current status of and results from the development program. For the first time, an entire pathway from beginning to end is outlined for fabrication of a high-gain, distributed radiator target. A significant development and scale-up program will be necessary to implement this pathway for mass production of IFE targets.

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Condensed Matter Physics,Atomic and Molecular Physics, and Optics

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Physical modeling of porous media behavior in targets for inertial fusion;Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment;2007-07

2. Investigation of plasma stream collision produced by thin films irradiated by powerful pulsed electron beam;Journal of Physics A: Mathematical and General;2006-04-07

3. Progress in heavy ion-driven target fabrication and injection;Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment;2005-05

4. Demonstrating a Target Supply for Inertial Fusion Energy;Fusion Science and Technology;2005-05-01

5. Operational Windows for Dry-Wall and Wetted-Wall IFE Chambers;Fusion Science and Technology;2004-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3