Abstract
AbstractLaser generated plasmas from target normal sheath acceleration produce energetic ions from the rear side of the target due to the formation of a high directive electric field. Fast electrons are ejected from the rear side of the target and a successive Coulomb explosion is driven by the fast electrons generating a high electric field of double layer. The ion acceleration is mainly controlled by the laser intensity and by the square of the laser wavelength. Literature reports that at intensities of the order of 1018 W/cm2 and at wavelengths of about 1 µm the ion energy is of the order of 5 MeV/nucleon. The use of advanced targets realized with the aim to reduce the surface reflection, to increase the laser absorption coefficient and, with an optimal thickness, to increase the electric field of the double layer, permits to enhance the ion energy acceleration, so that the energy of 5.0 MeV per charge state can be reached at about 1016 W/cm2, as it will be presented and discussed.
Subject
Electrical and Electronic Engineering,Condensed Matter Physics,Atomic and Molecular Physics, and Optics
Cited by
23 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献