Author:
Thareja R.K.,Abhilasha ,Dwivedi R.K.
Abstract
The plasma produced during pulsed-laser deposition of thin carbon films is studied in the presence of ambient gases (Air, He, Ar) at low and moderate irradiances of Nd:YAG laser. The presence of ambient gas shows a pronounced effect on the dynamics of the plasma plume. At moderate intensity, we report an appearance of a peculiar double-peak structure in the temporal profile of the C II transition in laser-produced carbon plasma as it expands into a background gas. We believe that the structure originates mainly due to stratification of the plasma into fast and slow ion components at the interface where Rayleigh-Taylor instability occurs. Thin carbon films deposited on silicon in the presence of argon gas have shown the characteristic features of diamond-like carbon in X-ray diffraction and Raman Spectroscopy. The X-ray diffraction pattern of carbon film deposited at 1 torr of argon gas pressure shows the dominance of (111), (220), (311), and (400) crystalline plane of cubic diamond.
Subject
Electrical and Electronic Engineering,Condensed Matter Physics,Atomic and Molecular Physics, and Optics
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献