Surface modifications of Ti6Al4V by a picosecond Nd:YAG laser

Author:

Trtica M.S.,Radak B.B.,Gakovic B.M.,Milovanovic D.S.,Batani D.,Desai T.

Abstract

AbstractInteraction of a Nd:YAG laser, operating at wavelengths of 1064 nm (23.6 J cm−2 fluence) or 532 nm (25.9 J cm−2 fluence), and pulse duration of 40 ps, with a titanium-based medical implant Ti6Al4V alloy was studied. Surface damage thresholds were estimated to be 0.9 J cm−2 and 0.25 J cm−2 at laser wavelengths 1064 nm and 532 nm, respectively. At both laser wavelengths, the energy absorbed was mostly converted into thermal energy, forming craters, albeit about 50 times deeper at 1064 nm than at 532 nm. Periodic surface structures (PSS) were also formed with both laser wavelengths, concentric, and radial at micrometer scale (3 µm to 15 µm period), parallel at nanometer scale (800 nm period with the 1064 nm laser, 400 nm with the 532 nm laser). In the case of the 532 nm laser, the concentric structures enlarge their period with accumulating laser pulse count. These features can help roughening of the implant surface and improve bio-compatibility.

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Condensed Matter Physics,Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3