Abstract
The effects of microscopic energy deposition in hot, dense plasmas and radiation transport in plasmas, on the interaction of ion beams with plane metal targets are investigated in this paper. In order to do this we analyze the plasma dynamics of ablatively accelerated plane metal foils. The physical analysis of these results is achieved by the derivation of solutions of the non-linear radiation conduction equation with boundary temperatures which increase in time. We illustrate, by means of numerical simulations, how range shortening due to plasma effects such as increased energy loss to excited electrons and an increased effective charge due to a reduction in the recombination rate, may be compensated for by radiation transport. The effect of radiation transport and detailed microscopic energy deposition on ion beam implosions, including hydrodynamic instability, is discussed.
Subject
Electrical and Electronic Engineering,Condensed Matter Physics,Atomic and Molecular Physics, and Optics
Cited by
20 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献