Author:
Niu K.,Mulser P.,Drska L.
Abstract
Analyses are given for beam generations of three kinds of charged particles: electrons, light ions, and heavy ions. The electron beam oscillates in a dense plasma irradiated by a strong laser light. When the frequency of laser light is high and its intensity is large, the acceleration of oscillating electrons becomes large and the electrons radiate electromagnetic waves. As the reaction, the electrons feel a damping force, whose effect on oscillating electron motion is investigated first. Second, the electron beam induces the strong electromagnetic field by its self-induced electric current density when the electron number density is high. The induced electric field reduces the oscillation motion and deforms the beam.In the case of a light ion beam, the electrostatic field, induced by the beam charge, as well as the electromagnetic field, induced by the beam current, affects the beam motion. The total energy of the magnetic field surrounding the beam is rather small in comparison with its kinetic energy.In the case of heavy ion beams the beam charge at the leading edge is much smaller in comparison with the case of light ion beams when the heavy ion beam propagates in the background plasma. Thus, the induced electrostatic and electromagnetic fields do not much affect the beam propagation.
Subject
Electrical and Electronic Engineering,Condensed Matter Physics,Atomic and Molecular Physics, and Optics
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献