Abstract
When a one-shell three-layer cryogenic target is irradiated by a driver beam of total energy 10 MJ and pulse width 30 ns, the pusher pressure increases to 1013 Pa, accelerating fuel toward target center, and the fuel implosion velocity reaches 3 × 105 m/s. A spherical hollow target plays the role of a supersonic converging nozzle, and the fuel is compressed to 269 times the solid density in the supersonic region and to 3·51 × 104 times in subsonic region. Nonuniform beam-energy-deposition in pusher layer causes nonuniform pusher pressure and hence nonuniform implosion, which reduces fuel compression significantly. The smoothing of pusher pressure by radiative energy transfer, or gas-filled target instead of cryogenic hollow target can be used to reduce the defect of nonuniform implosion. At last, the structure of an indirect driven target is proposed to smooth out pusher pressure in spite of nonuniform beam irradiation.
Subject
Electrical and Electronic Engineering,Condensed Matter Physics,Atomic and Molecular Physics, and Optics
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献