Target heating in high-energy-density matter experiments at the proposed GSI FAIR facility: Non-linear bunch rotation in SIS100 and optimization of spot size and pulse length

Author:

TAHIR N.A.,UDREA S.,DEUTSCH C.,FORTOV V.E.,GRANDJOUAN N.,GRYAZNOV V.,HOFFMANN D.H.H.,HÜLSMANN P.,KIRK M.,LOMONOSOV I.V.,PIRIZ A.R.,SHUTOV A.,SPILLER P.,TEMPORAL M.,VARENTSOV D.

Abstract

The Gesellschaft für Schwerionenforschung (GSI) Darmstadt has been approved to build a new powerful facility named FAIR (Facility for Antiprotons and Ion Research) which involves the construction of a new synchrotron ring SIS100. In this paper, we will report on the results of a parameter study that has been carried out to estimate the minimum pulse lengths and the maximum peak powers achievable, using bunch rotation RF gymnastic-including nonlinearities of the RF gap voltage in SIS100, using a longitudinal dynamics particle in cell (PIC) code, ESME. These calculations have shown that a pulse length of the order of 20 ns may be possible when no prebunching is performed while the pulse length gradually increases with the prebunching voltage. Three different cases, including 0.4 GeV/u, 1 GeV/u, and 2.7 GeV/u are considered for the particle energy. The worst case is for the kinetic energy of 0.4 GeV/u which leads to a pulse length of about 100 ns for a prebunching voltage of 100 kV (RF amplitude). The peak power was found to have a maximum, however, at 0.5–1.5kV prebunching voltage, depending on the mean kinetic energy of the ions. It is expected that the SIS100 will deliver a beam with an intensity of 1–2 × 1012 ions. Availability of such a powerful beam will make it possible to study the properties of high-energy-density (HED) matter in a parameter range that is very difficult to access by other means. These studies involve irradiation of high density targets by the ion beam for which optimization of the target heating is the key problem. The temperature to which a target can be heated depends on the power that is deposited in the material by the projectile ions. The optimization of the power, however, depends on the interplay of various parameters including beam intensity, beam spot area, and duration of the ion bunch. The purpose of this paper is to determine a set of the above parameters that would lead to an optimized target heating by the future SIS100 beam.

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Condensed Matter Physics,Atomic and Molecular Physics, and Optics

Reference26 articles.

1. Inertial confinement fusion driven by intense ion beams

2. Energy loss dynamics of an intense uranium beam interacting with solid neon for equation-of-state studies

3. Tahir, N.A. , Hoffmann, D.H.H. , Kozyreva, A. , Tauschwitz, A. , Shutov, A. , Maruhn, J.A. , Neuner, U. , Spiller, P. , Roth, M. , Jacoby, J. , Bock, R. , Juranek, H. & Redmer, R. (2001).Hydrogen metallization in heavy ion imploded multi-layeredcylindrical targets.Phys. Rev. E 63, 016402-1-9.

4. Beam losses in heavy ion drivers

5. Stopping power of dense helium plasma for fast heavy ions

Cited by 47 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3