Hugoniot EOS measurements at Mbar pressures

Author:

Evans A.M.,Freeman N.J.,Graham P.,Horsfield C.J.,Rothman S.D.,Thomas B.R.,Tyrrell A.J.

Abstract

The AWE HELEN laser is being used to measure high-pressure Hugoniot data by the impedance match method. Indirect drive is used to generate pressures of up to 10 Mbar in the aluminum reference material. We are aiming to measure shock velocities in our targets to ± 1 %, leading to errors in pressure and particle velocity of the order of ±2%. This requires improvements in target fabrication and characterization, streak camera calibration and data analysis, coupled with investigations into shock planarity and attenuation. Our latest results have accuracies of 2–4% in shock velocity but have identified work that should allow us to achieve our intended level of accuracy. Experiments have been done with copper and chlorinated plastic; our results are compared with theory, and, for copper, with U.S. and Russian gas-gun, explosively or nuclear-driven experiments.

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Condensed Matter Physics,Atomic and Molecular Physics, and Optics

Cited by 58 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Efficient target acceleration using underwater electrical explosion of wire array;Journal of Applied Physics;2021-01-21

2. Modeling of an advanced wedge test;SHOCK COMPRESSION OF CONDENSED MATTER - 2019: Proceedings of the Conference of the American Physical Society Topical Group on Shock Compression of Condensed Matter;2020

3. Hot Matter from High-Power Lasers;Hot Matter from High-Power Lasers;2020

4. Inter-atomic potential energy and Grüneisen parameter: A new method for equation of state of solids;Journal of Physics and Chemistry of Solids;2015-05

5. Shock Waves and Equations of State Related to Laser Plasma Interaction;Laser-Plasma Interactions and Applications;2013

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3