Equation of state and optimum compression in inertial fusion energy

Author:

Eliezer S.,Murakami M.,Martinez Val J.M.

Abstract

AbstractThe inertial confinement fusion (ICF) philosophy is based on high compression. The reasoning is that (a) it is cheaper (energetically) to compress than to heat and (b) nuclear reactions are proportional to density square, therefore the more you compress the better you are in ICF. Of course the only limitations of compression are the hydrodynamic instabilities (like Rayleigh-Taylor, etc). Many of the references in the literature require extremely high compression and in particular the pB11 needs extremely huge compressions. In this paper it is shown that there is an optimum of compression, namely gain G is maximum for a definite compression. The value of this density (for a given fuel mass and particular ICF scheme) depends on the equation of state (EOS). We calculate this value for fast ignition (FI) schemes and compare it with the central spark ignition (CSI) model. The gain calculations are based on the ideal gas for the ions and the Fermi-Dirac EOS for the electrons with an effective alpha, as usually suggested from simulations. The “optimum compression” idea is easily understood from the following argument: From EOS data one needs an infinite energy to compress to an infinite density. Since the energy output is finite it is clear that G is zero for infinite compression. On the other hand for normal density with small fuel mass (~ few mg) the gain is also zero. Therefore a maximum should exist somewhere. For the deuterium-tritium fuel with a mass of few mg one gets an optimum at few hundred g/cc. If you compress more then the gain is going down. So there is a desired maximum compression fixed by EOS. Last but not least, bremsstrahlung losses in degenerate plasma are discussed and the clean fusion (i.e., without neutrons) of proton + B11 → 4α is analyzed.

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Condensed Matter Physics,Atomic and Molecular Physics, and Optics

Cited by 43 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Charge Evolution for N2 + Ion Passing Through Ag Target;Journal of Physics: Conference Series;2023-03-01

2. 3D Potential Simulation for H2+ ion Under a Strong Laser Field;Journal of Physics: Conference Series;2023-03-01

3. MD Simulation of the Laser Effects on Stopping for B+ Ion in Plasmas;Journal of Physics: Conference Series;2022-01-01

4. Reduced stopping power for protons propagating through hot plasmas;Physics of Plasmas;2021-04

5. Energy loss of swift ions in different concentration and temperature of carbon plasma;PROCEEDINGS OF THE 2020 2ND INTERNATIONAL CONFERENCE ON SUSTAINABLE MANUFACTURING, MATERIALS AND TECHNOLOGIES;2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3