Bends and momentum dispersion during final compression in heavy ion fusion drivers

Author:

LEE EDWARD P.,BARNARD JOHN J.

Abstract

Between the accelerator and fusion chamber, the heavy ion beams are subject to a dramatic but vital series of manipulations, some of which are carried out simultaneously and involve large space charge forces. The beams' quality must be maintained at a level sufficient for the fusion application; this general requirement significantly impacts beam line design, especially in the considerations of momentum dispersion. Immediately prior to final focus onto a fusion target, heavy ion driver beams are compressed in length by typically an order of magnitude. This process is simultaneous with bending through large angles to achieve the required target illumination configuration. The large increase in beam current is accommodated by a combination of decreased lattice period, increased beam radius, and increased strength of the beamline quadrupoles. However, the large head-to-tail momentum tilt (up to 5%) needed to compress the pulse results in a very significant dispersion of the pulse centroid from the design axis. General design features are discussed. A principal design goal is to minimize the magnitude of the dispersion while maintaining approximate first order achromaticity through the complete compression/bend system. Configurations of bends and quadrupoles, which achieve this goal while simultaneously maintaining a locally matched beam-envelope, are analyzed.

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Condensed Matter Physics,Atomic and Molecular Physics, and Optics

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Numerical analysis of applied magnetic field dependence in Malmberg-Penning Trap for compact simulator of energy driver in heavy ion fusion;Journal of Physics: Conference Series;2016-05

2. Numerical simulation for longitudinal and transverse coupling motion in compact electron beam simulator for heavy ion inertial fusion;Progress in Nuclear Energy;2015-07

3. Longitudinal emittance growth due to nonlinear space charge effect;Physical Review Special Topics - Accelerators and Beams;2012-03-19

4. Final compression beamline systems for heavy ion fusion drivers;Laser and Particle Beams;2011-06-24

5. Beam behavior under a non-stationary state in high-current heavy ion beams;Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment;2009-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3