Tissue characterisation and myocardial mechanics using cardiac MRI in children with hypertrophic cardiomyopathy

Author:

Sunthankar Sudeep,Parra David A.,George-Durrett Kristen,Crum Kimberly,Chew Joshua D.,Christensen Jason,Raucci Frank J.,Xu Meng,Slaughter James C.,Soslow Jonathan H.ORCID

Abstract

AbstractIntroduction:Distinguishing between hypertrophic cardiomyopathy and other causes ofleft ventricular hypertrophy can be difficult in children. We hypothesised that cardiac MRI T1 mapping could improve diagnosis of paediatric hypertrophic cardiomyopathy and that measures of myocardial function would correlate with T1 times and extracellular volume fraction.Methods:Thirty patients with hypertrophic cardiomyopathy completed MRI with tissue tagging, T1-mapping, and late gadolinium enhancement. Left ventricular circumferential strain was calculated from tagged images. T1, partition coefficient, and synthetic extracellular volume were measured at base, mid, apex, and thickest area of myocardial hypertrophy. MRI measures compared to cohort of 19 healthy children and young adults. Mann–Whitney U, Spearman’s rho, and multivariable logistic regression were used for statistical analysis.Results:Hypertrophic cardiomyopathy patients had increased left ventricular ejection fraction and indexed mass. Hypertrophic cardiomyopathy patients had decreased global strain and increased native T1 (−14.3% interquartile range [−16.0, −12.1] versus −17.3% [−19.0, −15.7], p < 0.001 and 1015 ms [991, 1026] versus 990 ms [972, 1001], p = 0.019). Partition coefficient and synthetic extracellular volume were not increased in hypertrophic cardiomyopathy. Global native T1 correlated inversely with ejection fraction (ρ = −0.63, p = 0.002) and directly with global strain (ρ = 0.51, p = 0.019). A logistic regression model using ejection fraction and native T1 distinguished between hypertrophic cardiomyopathy and control with an area under the receiver operating characteristic curve of 0.91.Conclusion:In this cohort of paediatric hypertrophic cardiomyopathy, strain was decreased and native T1 was increased compared with controls. Native T1 correlated with both ejection fraction and strain, and a model using native T1 and ejection fraction differentiated patients with and without hypertrophic cardiomyopathy.

Publisher

Cambridge University Press (CUP)

Subject

Cardiology and Cardiovascular Medicine,General Medicine,Pediatrics, Perinatology and Child Health

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3