Empirical evidence and computational assessment on design knowledge transferability

Author:

Rahman Molla H.,Bayrak Alparslan E.ORCID,Sha ZhenghuiORCID

Abstract

Abstract Developing an artificial design agent that mimics human design behaviors through the integration of heuristics is pivotal for various purposes, including advancing design automation, fostering human-AI collaboration, and enhancing design education. However, this endeavor necessitates abundant behavioral data from human designers, posing a challenge due to data scarcity for many design problems. One potential solution lies in transferring learned design knowledge from one problem domain to another. This article aims to gather empirical evidence and computationally evaluate the transferability of design knowledge represented at a high level of abstraction across different design problems. Initially, a design agent grounded in reinforcement learning (RL) is developed to emulate human design behaviors. A data-driven reward mechanism, informed by the Markov chain model, is introduced to reinforce prominent sequential design patterns. Subsequently, the design agent transfers the acquired knowledge from a source task to a target task using a problem-agnostic high-level representation. Through a case study involving two solar system designs, one dataset trains the design agent to mimic human behaviors, while another evaluates the transferability of these learned behaviors to a distinct problem. Results demonstrate that the RL-based agent outperforms a baseline model utilizing the first-order Markov chain model in both the source task without knowledge transfer and the target task with knowledge transfer. However, the model’s performance is comparatively lower in predicting the decisions of low-performing designers, suggesting caution in its application, as it may yield unsatisfactory results when mimicking such behaviors.

Funder

National Science Foundation

Publisher

Cambridge University Press (CUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3