A study of the evolution and characteristics of the invariants of the velocity-gradient tensor in isotropic turbulence

Author:

OOI ANDREW,MARTIN JESUS,SORIA JULIO,CHONG M. S.

Abstract

Since the availability of data from direct numerical simulation (DNS) of turbulence, researchers have utilized the joint PDFs of invariants of the velocity gradient tensor to study the geometry of small-scale motions of turbulence. However, the joint PDFs only give an instantaneous static representation of the properties of fluid particles and dynamical Lagrangian information cannot be extracted. In this paper, the Lagrangian evolution of the invariants of the velocity gradient tensor is studied using conditional mean trajectories (CMT). These CMT are derived using the concept of the conditional mean time rate of change of invariants calculated from a numerical simulation of isotropic turbulence. The study of the CMT in the invariant space (RA, QA) of the velocity-gradient tensor, invariant space (RS, QS) of the rate-of-strain tensor, and invariant space (RW, QW) of the rate-of-rotation tensor show that the mean evolution in the (Σ, QW) phase plane, where Σ is the vortex stretching, is cyclic with a characteristic period similar to that found by Martin et al. (1998) in the cyclic mean evolution of the CMT in the (RA, QA) phase plane. Conditional mean trajectories in the (Σ, QW) phase plane suggest that the initial reduction of QW in regions of high QW is due to viscous diffusion and that vorticity contraction only plays a secondary role subsequent to this initial decay. It is also found that in regions of the flow with small values of QW, the local values of QW do not begin to increase, even in the presence of self-stretching, until a certain self-stretching rate threshold is reached, i.e. when Σ≈0.25 〈QW1/2. This study also shows that in regions where the kinematic vorticity number (as defined by Truesdell 1954) is low, the local value of dissipation tends to increase in the mean as observed from a Lagrangian frame of reference. However, in regions where the kinematic vorticity number is high, the local value of enstrophy tends to decrease. From the CMT in the (−QS, RS phase plane, it is also deduced that for large values of dissipation, there is a tendency for fluid particles to evolve towards having a positive local value of the intermediate principal rate of strain.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3