Linear stability of co-flowing liquid–gas jets

Author:

GORDILLO J. M.,PÉREZ-SABORID M.,GAÑÁN-CALVO A. M.

Abstract

A temporal, inviscid, linear stability analysis of a liquid jet and the co-flowing gas stream surrounding the jet has been performed. The basic liquid and gas velocity profiles have been computed self-consistently by solving numerically the appropriate set of coupled Navier–Stokes equations reduced using the slenderness approximation. The analysis in the case of a uniform liquid velocity profile recovers the classical Rayleigh and Weber non-viscous results as limiting cases for well-developed and very thin gas boundary layers respectively, but the consideration of realistic liquid velocity profiles brings to light new families of modes which are essential to explain atomization experiments at large enough Weber numbers, and which do not appear in the classical stability analyses of non-viscous parallel streams. In fact, in atomization experiments with Weber numbers around 20, we observe a change in the breakup pattern from axisymmetric to helicoidal modes which are predicted and explained by our theory as having an hydrodynamic origin related to the structure of the liquid-jet basic velocity profile. This work has been motivated by the recent discovery by Gañán-Calvo (1998) of a new atomization technique based on the acceleration to large velocities of coaxial liquid and gas jets by means of a favourable pressure gradient and which are of emerging interest in microfluidic applications (high-quality atomization, micro-fibre production, biomedical applications, etc.).

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 77 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3