The pressure distribution on dihedral wings at supersonic speed

Author:

Ting Lu

Abstract

For wings with supersonic edges and with arbitrary dihedral, twist, camber and thickness distribution, the pressure distribution on the wing exterior to and along the two Mach lines emanating from the vertex of the wing is equal to the corresponding pressure distribution for a planar wing. The problem is to find the pressure distribution inside the two Mach lines. In the present paper, the unknown pressure distribution is approximated by an elementary function of the two surface variables. The (as yet undetermined) constants in the function are then found by the conditions: (i) that the function takes on the corresponding planar values along the two Mach lines, (ii) that it fulfils certain generalized integral relationships (Ting 1959), and (iii) that it satisfies the averaging property of solutions of the wave equation to be developed in this paper. The generalized integral relationship relates the integral of the pressure distribution along the line of intersection of a Mach plane with the wing to the integral along the same line of the prescribed normal velocity. The averaging property relates the pressure distribution along the line of intersection of the surface of the dihedral wing to that on a planar wing.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference11 articles.

1. Lagerstrom, P. A. & Van Dyke, M. D. 1949 Douglas Aircraft Company Rep. no. SM-13432.

2. Ferri, A. 1955 Proceedings of the Conference on High-Speed Aeronautics, Polytechnic Institute of Brooklyn, New York .

3. Germain, P. 1955 Nat. Adv. Comm. Aero., Wash., Tech. Mem. no. 1354.

4. Ting, L. 1959 Quart. Appl. Math. 16,373.

5. Bleviss, Z. O. 1953 J. Aero. Sci. 20,849.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3