Author:
PALIES P.,DUROX D.,SCHULLER T.,CANDEL S.
Abstract
When an acoustic wave impinges on an aerofoil cascade, a convective vorticity mode is generated giving rise to transverse velocity perturbations. This mode conversion process is investigated to explain the flow dynamics observed when swirlers are submitted to incident acoustic disturbances. The phenomenon is first studied in the case of a two-dimensional aerofoil cascade using a model derived from an actuator disk theory. The model is simplified to deal with low-Mach-number flows. The velocity field on the downstream side of the cascade features two components, an axial perturbation associated with the transmitted acoustic wave and a transverse disturbance corresponding to the vorticity wave generated at the cascade trailing edge. The model provides the amplitude of both components and defines their phase shift. Numerical simulations are carried out in a second stage to validate this model in the case of a cascade operating at a low Reynolds number Rec = 2700 based on the chord length. Space–time diagrams of velocity perturbations deduced from these simulations are used to retrieve the two types of modes. Experiments are then carried out in the case of an axial swirler placed in a cylindrical duct and submitted to plane acoustic waves emitted on the upstream side of the swirler. The amplitude and phase of the two velocity components measured in the axial and azimuthal directions are found to be in good agreement with theoretical estimates and with numerical calculations. This analysis is motivated by combustion dynamics observed in flames stabilized by aerodynamic swirlers in continuous combustors.
Publisher
Cambridge University Press (CUP)
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics
Cited by
57 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献