Near-critical hydraulic flows in two-layer fluids

Author:

KLUWICK ALFRED,SCHEICHL STEFAN,COX EDWARD A.

Abstract

This paper deals with the propagation of nearly resonant gravity waves in two-layer flows over a bottom topography assuming that both fluids are incompressible and inviscid. Evolution equations are derived for weakly nonlinear surface-layer and internal-layer waves in the hydraulic limit of infinite wavelength. Special emphasis is placed on the flow regime where the quadratic nonlinear parameter associated with internal-layer waves is small or vanishes. For example, this is the case for all possible density ratios if the velocities in both layers are equal and if the interface height is close to one-half the total fluid-layer height. The waves then exhibit so-called mixed nonlinearity leading in turn to the formation of positive and negative hydraulic jumps. Considerations based on a model equation for the internal dissipative–dispersive structure of hydraulic jumps indicate that the admissibility of discontinuities in this regime depends strongly on the relative magnitudes of dispersion and dissipation. Surprisingly, these admissible hydraulic jumps may violate the wave-speed-ordering relationship which requires that the upstream wave speed does not exceed the propagation speed of the discontinuity. An important example is provided by the inviscid hydraulic jump, which has been known for some time, although its non-classical nature, in that it transmits rather than absorbs waves, has apparently not been recognized before.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Hamiltonian shocks;Studies in Applied Mathematics;2024-07-09

2. Dynamic soliton–mean flow interaction with non-convex flux;Journal of Fluid Mechanics;2021-10-06

3. Shock discontinuities: from classical to non-classical shocks;Acta Mechanica;2017-12-21

4. Dispersive and Diffusive-Dispersive Shock Waves for Nonconvex Conservation Laws;SIAM Review;2017-01

5. Dispersive shock waves and modulation theory;Physica D: Nonlinear Phenomena;2016-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3