Preferred pattern of convection in a porous layer with a spatially non-uniform boundary temperature

Author:

Riahi D. N.

Abstract

The problem of finite-amplitude thermal convection in a porous layer between two horizontal walls with different mean temperatures is considered when spatially non-uniform temperature with amplitude L* is prescribed at the lower wall. The nonlinear problem of three-dimensional convection for values of the Rayleigh number close to the classical critical value is solved by using a perturbation technique. Two cases are considered: the wavelength γ(b)n of the nth mode of the modulation is equal to or not equal to the critical wavelength γc for the onset of classical convection. The preferred mode of convection is determined by a stability analysis in which arbitrary infinitesimal disturbances are superimposed on the steady solutions. The most surprising results for the case γ(b)n = γc for all n are that regular or non-regular solutions in the form of multi-modal pattern convection can become preferred in some range of L*, provided the wave vectors of such pattern are contained in the set of wave vectors representing the spatially non-uniform boundary temperature. There can be critical value(s) L*c of L* below which the preferred flow pattern is different from the one for L* > L*c. The most surprising result for the case γ(b)n ≠ γc and γ(b)n ≡ γ(b) for all n is that some three-dimensional solution in the form of multi-modal convection can be preferred, even if the boundary modulation is one-dimensional, provided that the wavelength of the modulation is not too small. Here γ(b) is a constant independent of n.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference23 articles.

1. Hall, P. & Walton, I. C. 1978 The smooth transition to a convective regime in a two-dimensional box.Proc. R. Land. Soc. A358,199–221.

2. Yoo, J.-S. & Kim, M.-U. 1991 Two-dimensional convection in a horizontal fluid layer with spatially periodic boundary temperatures.Fluid Dyn. Res. 7,181–200.

3. Busse, F. H. 1972 On the mean flow induced by a thermal wave.J. Atmos. Sci. 29,1423–1429.

4. Lapwood, E. R. 1948 Convection of a fluid in a porous medium.Proc. Camb. Phil Soc. 44,508–521.

5. Palm, E. , Weber, J. E. & Kvernvold, O. 1972 ON steady convection in a porous medium.J. Fluid. Mech. 54,153–161.

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3