Impingement of an unsteady two-phase jet on unheated and heated flat plates

Author:

Özdemir İ. Bedii,Whitelaw J. H.

Abstract

This paper is concerned with an experimental investigation of the oblique impingement of an unsteady, axisymmetric two-phase jet on heated surfaces. Size and velocity were measured simultaneously with a phase-Doppler velocimeter, and the spatial distributions over the wall jet were found to be correlated with the interfacial activities as inferred from vertical velocity measurements in the vicinity of the wall. These results are discussed together with size measurements by a laser-diffraction technique to quantify the effect of the approach conditions of the inflowing jet droplet field and wall temperature in relation to mechanisms of secondary atomization.Two mechanisms of secondary atomization were identified; the first did not involve direct wall contact and was due to the strain acting on the droplets by the continuous phase within the impingement region and was enhanced by thermal effects from the wall to cause breakup. The approaching velocity of the inflowing droplets to the plate was important to this process so that higher velocities increased the rate of strain within the impingement region and, consequently, the wall temperature promoting the secondary atomization shifted towards lower values. The second mechanism required direct wall contact and involved atomization of the film deposited on the wall by the impingement of the inflowing two-phase jet. With the penetration of high-speed inflowing droplets into the film, liquid mass was raised into the two-phase medium due to splashes from the film so that a new size class with larger droplets was generated. The resulting large droplets tended to stay close to the wall within the impingement region with small vertical velocitiesIn between the injections, the suspended droplet field above the film oscillated normal to the plate as a cloud so that the impact of large droplets on the film resulted in coalescence with the film and the ejection of smaller numbers of small droplets. The unsteady wall jet flow, caused by the arrival of the spray at the plate, swept the vertically oscillating droplet cloud radially outwards so that the resulting radial transport caused the dynamics of the unsteady film to be correlated with the size characteristics of the unsteady wall jet. Based on this phenomenological description, a radial droplet transport equation is derived.The correlation suggests that the secondary atomization with direct wall contact is the dominant process for the generation of a new size class within the wall flow and initiates the mutual interaction between the unsteady film and wall jet droplet field.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference41 articles.

1. Pedersen, C. O. 1970 An experimental study of the dynamic behavior and heat transfer characteristics of water droplets impinging upon a heated surface.Intl J. Heat Mass Transfer 13,369–381.

2. Hoogendoorn, C. J. & Hond, R. Den 1974 Leidenfrost temperature and heat-transfer coefficients for water sprays impinging on a hot surface .Proc. Fifth Intl Heat Transfer Conference, vol. 4, pp.135–138.

3. Reitz, R. D. & Bracco, F. V. 1979 Ultra-high-speed filming of atomizing jets.Phys. Fluids 22,1054–1064.

4. Hirleman, E. D. , Oechsle, V. & Chigier, N. A. 1984 Response characteristics of laser diffraction particle analyzer: optical sample volume extent and lens effects.Opt. Engng 23,610–619.

5. Skiepko, J. & Panas, J. 1989 Instability of the motion of a spherical drop in a vertical temperature gradient.Arch. Mech. 41,811–820.

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3