Low-frequency dynamics of shock-induced separation in a compression ramp interaction

Author:

GANAPATHISUBRAMANI B.,CLEMENS N. T.,DOLLING D. S.

Abstract

The low-frequency dynamics of the shock-induced separation region in a Mach 2 compression ramp interaction is investigated by performing high-speed particle image velocimetry (HSPIV) measurements, at a rate of 6kHz, in a streamwise–spanwise plane. The HSPIV measurements made in the upstream turbulent boundary layer indicate the presence of spanwise strips of elongated regions of uniform streamwise velocity that extend to lengths greater than 30δ, validating previous results based on planar laser scattering measurements obtained by Ganapathisubramani, Clemens & Dolling (J. Fluid Mech., vol. 585, 2007, p. 369). At a wall normal-location of y/δ=0.2, a surrogate for separation based on a velocity threshold is found to fluctuate over a streamwise range of ±1.2δ, consistent with previous studies. The amplitude of unsteadiness has contributions from at least two sources that are related to the incoming boundary layer. First, the velocity threshold based surrogate separation line exhibits large-scale undulations along the spanwise direction that conform to the passage of elongated low- and high-speed regions in the upstream boundary layer. This motion is classified as the local influence of the upstream boundary layer. Second, the spanwise-averaged surrogate separation is found to respond to the overall change in streamwise velocity in the incoming boundary layer and is classified as the global influence of the upstream boundary layer. However, this global influence includes the contributions from the elongated low- and high-speed regions. Preliminary findings based on statistical analysis suggest that the local influence contributes nearly 50% more than the global influence. Regardless, the low-frequency unsteadiness of the separation-region can be attributed to the local and global influences of the incoming boundary layer.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3