Optimization of pulsed jets in crossflow

Author:

SAU RAJES,MAHESH KRISHNAN

Abstract

We use direct numerical simulation to study the mixing behaviour of pulsed jets in crossflow. The pulse is a square wave and the simulations consider several jet velocity ratios and pulse conditions. Our objective is to study the effects of pulsing and to explain the wide range of optimal pulsing conditions found in experimental studies of the problem. The central theme is that pulsing generates vortex rings; the effect of pulsing on transverse jets can therefore be explained by the behaviour of vortex rings in crossflow. Sau & Mahesh (J. Fluid Mech., vol. 604, 2008, pp. 389–409) show that vortex rings in crossflow exhibit three distinct flow regimes depending on stroke and ring velocity ratios. The simulations of pulsed transverse jets in this paper show that at high velocity ratios, optimal pulse conditions correspond to the transition of the vortex rings produced by pulsing between the different regimes. At low velocity ratios, optimal pulsing conditions are related to the natural time scale on which hairpin vortices form. An optimal curve in the space of stroke and velocity ratios is presented. Data from various experiments are interpreted in terms of the properties of the equivalent vortex rings and shown to collapse on the optimal curve. The proposed regime map allows the effects of experimental parameters such as pulse frequency, duty cycle, modulation and pulse energy all to be predicted by determining their effect on the equivalent stroke and velocity ratios.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3