Direct numerical simulation of turbulence in injection-driven three-dimensional cylindrical flows

Author:

ZHANG JU,JACKSON THOMAS L.

Abstract

Incompressible turbulent flow in a periodic circular pipe with strong injection is studied as a simplified model for the core flow in a solid-propellant rocket motor and other injection-driven internal flows. The model is based on a multi-scale asymptotic approach. The intended application of the current study is erosive burning of solid propellants. Relevant analysis for easily accessible parameters for this application, such as the magnitudes, main frequencies and wavelengths associated with the near-wall shear, and the assessment of near-wall turbulence viscosity is focused on. It is found that, unlike flows with weak or no injection, the near-wall shear is dominated by the root mean square of the streamwise velocity which is a function of the Reynolds number, while the mean streamwise velocity is only weakly dependent on the Reynolds number. As a result, a new wall-friction velocity $\(u_\tau{\,=\,}\sqrt{\tau_w/\rho}\)$, based on the shear stress derived from the sum of the mean and the root mean square, i.e. $\(\tau_{w,inj} {\,=\,} \mu |{\partial (\bar{u}+u_{rms})}/{\partial r}|_w\)$, is proposed for the scaling of turbulent viscosity for turbulent flows with strong injection. We also show that the mean streamwise velocity profile has an inflection point near the injecting surface.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3