Evolution equations for counterpropagating edge waves

Author:

Pierce R. D.,Knobloch E.

Abstract

Asymptotically exact evolution equations for counterpropagating shallow-water edge waves are derived. The structure of the equations depends only on the symmetries of the problem and on the fact that the group velocity of the edge waves is of order one. As a result the equations take the form of parametrically forced Davey–Stewartson equations with mean-field coupling. The calculations extend existing work on parametric excitation of edge waves by normally incident waves to arbitrary beach profiles with asymptotically constant depth, and include coupling to wave-generated mean longshore currents. Dissipation arises generically from radiation damping, but we also consider heuristically the effects of linear boundary-layer damping. Spatially modulated waves do not couple to the parametric forcing due to the non-locality of the evolution equations and are damped. Thus only spatially uniform wavetrains are expected as stable solutions. If linear dissipation is included the parametric coupling selects standing waves, but in the undamped case travelling wave states are possible. Both classes of solutions are examined for modulational instabilities, and stability conditions for the generic evolution equations are presented. However, modulational instability is found to be excluded in the shallow-water formulation through the effects of the mean flow. Explicit numerical results for two experimentally relevant beach profiles, exponentially decaying and piecewise linear, are presented.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference25 articles.

1. Rockliff, N. 1978 Finite amplitude effects in free and forced edge waves.Math. Proc. Camb. Phil. Soc. 83,463–479.

2. Weinberger, H. F. 1965 A First Course in Partial Differential Equations , pp.160–197.Wiley.

3. Pierce, R. D. & Knobloch, E. 1993 On the modulational stability of travelling and standing water waves.Phys. Fluids Ain press.

4. McGoldrick, L. F. 1970 On Wilton's ripples: a special case of resonant wave interactions.J. Fluid Mech. 42,193–200.

5. Crawford, J. D. & Knobloch, E. 1991 Symmetries and symmetry-breaking bifurcations in fluid dynamics.Ann. Rev. Fluid Mech. 23,341–387.

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3