On internal waves generated by large-amplitude circular and rectilinear oscillations of a circular cylinder in a uniformly stratified fluid

Author:

ERMANYUK EUGENY V.,GAVRILOV NIKOLAI V.

Abstract

This paper presents an experimental study of internal waves generated by circular and rectilinear oscillations of a circular cylinder in a uniformly stratified fluid. The synthetic schlieren technique is used for quantitative analysis of the internal-wave parameters. It is shown that at small oscillation amplitudes, the wave pattern observed for circular oscillations is in good agreement with linear theory: internal waves are radiated in the wave beams passing through the first and third quadrants of a Cartesian coordinate system for the clockwise direction of the cylinder motion, and the intensity of these waves is twice the intensity measured for ‘St Andrew's cross’ waves generated by purely horizontal or vertical oscillations of the same frequency and amplitude. As the amplitude of circular oscillations increases, significant nonlinear effects are observed: (i) a strong density-gradient ‘zero-frequency’ disturbance is generated, and (ii) a region of intense fluid stirring is formed around the cylinder serving as an additional dissipative mechanism that changes the shape of wave envelopes and decreases the intensity of wave motions. In the same range of oscillation amplitudes, the wave generation by rectilinear (horizontal and vertical) oscillations is shown to be by and large a linear process, with moderate manifestations of nonlinearity such as weak ‘zero-frequency’ disturbance and weak variation of the shape of wave envelopes with the oscillation amplitude. Analysis of spatiotemporal images reveals different scenarios of transient effects in the cases of circular and rectilinear oscillations. In general, circular oscillations tend to generate disturbances evolving at longer time scales.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3