Instability of a stratified boundary layer and its coupling with internal gravity waves. Part 1. Linear and nonlinear instabilities

Author:

WU XUESONG,ZHANG JING

Abstract

In this paper, we consider a viscous instability of a stratified boundary layer that is a form of the familiar Tollmien–Schlichting (T-S) waves modified by a stable density stratification. As with the usual T-S waves, the triple-deck formalism was employed to provide a self-consistent description of linear and nonlinear instability properties at asymptotically large Reynolds numbers. The effect of stratification on the temporal and spatial linear growth rates is studied. It is found that stratification reduces the maximum spatial growth rate, but enhances the maximum temporal growth rate. This viscous instability may offer a possible alternative explanation for the origin of certain long atmospheric waves, whose characteristics are not well predicted by inviscid instabilities. In the high-frequency limit, the nonlinear evolution of the disturbances is shown to be governed by a nonlinear amplitude equation, which is an extension of the well-known Benjamin–Davis–Ono equation. Numerical solutions indicate that as a spatially isolated disturbance evolves, it radiates a beam of long gravity waves, and meanwhile small-scale ripples develop on its front to form a well-defined wavepacket. It is also shown that for jet-like velocity profiles, the standard triple-deck theory must be adjusted to account for both the displacement and transverse pressure variation induced by the inviscid flow in the main layer. The nonlinear evolution of high-frequency disturbances is governed by a mixed KdV–Benjamin–Davis–Ono equation.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3