Reynolds-number dependency in homogeneous, stationary two-dimensional turbulence

Author:

BRACCO ANNALISA,MCWILLIAMS JAMES C.

Abstract

Turbulent solutions of the two-dimensional Navier–Stokes equations are a paradigm for the chaotic space–time patterns and equilibrium distributions of turbulent geophysical and astrophysical ‘thin’ flows on large horizontal scales. Here we investigate how homogeneous, stationary two-dimensional turbulence varies with the Reynolds number (Re) in stationary solutions with large-scale, random forcing and viscous diffusion, also including hypoviscous diffusion to limit the inverse energy cascade. This survey is made over the computationally feasible range in Re ≫ 1, approximately between 1.5 × 103 and 5.6 × 106. For increasing Re, we witness the emergence of vorticity fine structure within the filaments and vortex cores. The energy spectrum shape approaches the forward-enstrophy inertial-range form k−3 at large Re, and the velocity structure function is independent of Re. All other statistical measures investigated in this study exhibit power-law scaling with Re, including energy, enstrophy, dissipation rates and the vorticity structure function. The scaling exponents depend on the forcing properties through their influences on large-scale coherent structures, whose particular distributions are non-universal. A striking result is the Re independence of the intermittency measures of the flow, in contrast with the known behaviour for three-dimensional homogeneous turbulence of asymptotically increasing intermittency. This is a consequence of the control of the tails of the distribution functions by large-scale coherent vortices. Our analysis allows extrapolation towards the asymptotic limit of Re → ∞, fundamental to geophysical and astrophysical regimes and their large-scale simulation models where turbulent transport and dissipation must be parameterized.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3