The effects of a vertical contraction on turbulence dynamics in a stably stratified fluid

Author:

Thoroddsen S. T.,Van Atta C.W.

Abstract

We have experimentally studied the effects of mean strain on the evolution of stably stratified turbulence. Grid-generated turbulence ($Re_{\lambda \leqslant 25}$) in a stable linear mean background density gradient was passed through a two-dimensional contraction, contracting the stream only in the vertical direction. This induces an increase in stratification strength, which reduces the largest vertical overturning scales allowed by buoyancy forces. The mean strain through the contraction causes, on the other hand, stretching of streamwise vortices tending to increase the fluctuation levels of the transverse velocity components. This competition between buoyancy and vortex stretching dominates the turbulence dynamics inside and downstream of the contraction. Comparison between non-stratified and stratified experiments shows that the stratification significantly reduces the vertical velocity fluctuations. The vertical heat flux is initially enhanced through the contraction. Then, farther downstream the flux quickly reverses, leading to very strong restratification coinciding with an increase in the vertical velocity fluctuations. The vertical heat flux collapses much more rapidly than in the stratified case without an upstream contraction and the restratification intensity is also much stronger, showing values of normalized flux as strong as −0.55. Velocity spectra show that the revival of vertical velocity fluctuations, due to the strong restratification, starts at the very largest scales but is then subsequently transferred to smaller scales. The distance from the turbulence-generating grid to the entrance of the contraction is an important parameter which was varied in the experiments. The larger this distance, the larger the integral length scale can grow, approaching the limit set by buoyancy, before entering the contraction. The evolution of the various turbulence length scales is described. Two-point measurements of velocity and temperature transverse integral scales were also performed inside the contraction. The emergence of ‘zombie’ turbulence, for large buoyancy times, is in good quantitative agreement with the numerical simulations of Gerz & Yamazaki (1993) for stratification number larger than 1.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3