Highly accelerated, free-surface flows

Author:

Longuet-Higgins Michael S.

Abstract

Accelerations exceeding 20g in surface waves have been observed both in experiments and in numerically computed flows with a free surface. The present paper describes a family of analytic solutions which display such behaviour. They are expressible in parametric form as z = F sinh ω + iG cosh ω + γω + iH, where F, G and H are functions of the time t only, and γ is linear in t. ω is a complex parameter which is real at the free surface. The functions F(t) and G(t) satisfy two nonlinear, coupled ODEs, which can be solved numerically. Typically the solutions pass through an ‘inertial shock’, or singularity in the time, where the displacements vary as t2/3, the velocities as t1/3 and the accelerations as t-4/3. In this class of solution the free surface develops a cusp as t → ∞. In a special case, F and G vary as t4/7 and the cusp is reached in finite time. Gravity is neglected, but plays a part in setting up the initial conditions for the highly accelerated flow.In future papers it will be shown that more general solutions exist in which the acceleration is momentarily large but bounded.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference11 articles.

1. Longuet-Higgins, M. S. 1983b Towards the analytic description of overturning waves. In Nonlinear Waves (ed. L. Debnath ), pp.1–24.Cambridge University Press,360 pp.

2. Longuet-Higgins, M. S. 1993b Highly-accelerated, free-surface flows. III. Inertial shocks of bounded intensity . (To be submitted).

3. Longuet-Higgins, M. S. 1972 A class of exact, time-dependent, free-surface flows.J. Fluid Mech. 55,529–543.

4. Peregrine, D. H. & Cooker, M. J. 1991 Violent motion as near-breaking waves meet a wall. Proc. IUTAM Symp. on Breaking Waves, Sydney, Australia, July 1991 .

5. Longuet-Higgins, M. S. 1976 Self-similar, time-dependent flows with a free surface.J. Fluid Mech. 73,603–620.

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3