Whole-field velocity measurements around an axisymmetric body with a Stratford–Smith pressure recovery

Author:

HAMMACHE M.,BROWAND F. K.,BLACKWELDER R. F.

Abstract

Wind tunnel experiments are performed on a body of revolution with aft-section designed to be an axisymmetric Stratford ramp (i.e. the flow over the ‘ramp’ experiences an adverse pressure gradient that causes it to be continuously on the verge of separation). Digital particle image velocimetry (DPIV) measurements over the ramp reveal a thick boundary layer that is characterized by self-similar velocity profiles with a large wake component and organized vorticity structures. The mean skin friction quickly drops to a value near zero.The sensitivity of the boundary layer to the degree of severity of the adverse pressure gradient is investigated by testing two additional ramps; one is slightly more conservative (i.e. less steep) than the Stratford ramp while the other is slightly more radical (i.e. steeper). In comparison to the Stratford ramp, the conservative ramp is characterized by a thinner boundary layer, with velocity profiles that start attached and gradually develop a large wake component, a much more gradual drop in the skin friction, and vorticity that is concentrated very close to the wall. On the other hand, the boundary layer over the radical ramp is unsteady and separates intermittently. Measurements of the drag force on each of the three bodies confirm that the Stratford ramp experiences the least amount of drag.Finally, additional data are gathered on the windward and leeward sides of the Stratford ramp when subjected to a small angle of attack. This case exhibits a more complex flow structure: the flow remains attached over the windward side of the ramp while separating over the leeward side.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3