Optical altimetry: a new method for observing rotating fluids with applications to Rossby and inertial waves on a polar beta-plane

Author:

RHINES P. B.,LINDAHL E. G.,MENDEZ A. J.

Abstract

The entire free-surface elevation field of a rotating fluid in the laboratory can be imaged and analysed, by using it as a parabolic Newtonian telescope mirror. This ‘optical altimetry’ readily achieves a precision of better than 1 μm of surface elevation. The surface topography corresponds to the pressure field just beneath the surface. It is the streamfunction for the geostrophic hydrostatic circulation, which can be resolved to better than 0.1 mm s−1. Still and animated images thus produced, of the entire surface elevation field, are of value in themselves, and using a projected image (a speckle pattern), have the promise of providing quantitative slope and height field data recovered by PIV (particle imaging velocimetry) techniques. With homogeneous fluid, geostrophic flow is the same at all depths. Yet of equal interest are sheared stratified rotating flows where the surface pressure is associated with inertial waves, convection, and other motions, geostrophic or ageostrophic.Although the technique is designed for experiments in which Coriolis effects are strong, it is possible to use reflective imaging for flows at such high Rossby number that Coriolis effects are negligible, and hence this becomes a tool of more general interest in non-rotating fluid dynamics (for example, illuminating surface gravity waves).Examples are given, involving (i) the Taylor–Proudman effect with very slow flows over topography; (ii) quasi-geostrophic and inertial-wave flows over a mountain (f-plane); (iii) inertial waves generated by oscillatory forcing; (iv) Kelvin waves (v) free oscillatory Rossby waves on a polar β-plane; and (vi) stationary waves, blocking, jets and wakes with β-plane zonal flow past a mountain. Movies are available with the online version of the paper.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference23 articles.

1. Rhines P. B. 2006 c Jets and Orography: Idealized Experiments with Tip-Jets and Lighthill blocking J. Atmos. Sci. submitted.

2. Deep Planetary Circulation and Topography: Simple Models of Midocean Flows

3. Slow oscillations in an ocean of varying depth. Part 2. Islands and seamounts;Rhines;J. fluid Mech.,1969

4. An accompt of a new catadioptical telescope invented by Mr. Newton;Newton;Phil. Trans. R. Soc. Lond.,1672

5. Inertial Taylor columns on a beta plane

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3