Author:
RHINES P. B.,LINDAHL E. G.,MENDEZ A. J.
Abstract
The entire free-surface elevation field of a rotating fluid in the laboratory can be imaged and analysed, by using it as a parabolic Newtonian telescope mirror. This ‘optical altimetry’ readily achieves a precision of better than 1 μm of surface elevation. The surface topography corresponds to the pressure field just beneath the surface. It is the streamfunction for the geostrophic hydrostatic circulation, which can be resolved to better than 0.1 mm s−1. Still and animated images thus produced, of the entire surface elevation field, are of value in themselves, and using a projected image (a speckle pattern), have the promise of providing quantitative slope and height field data recovered by PIV (particle imaging velocimetry) techniques. With homogeneous fluid, geostrophic flow is the same at all depths. Yet of equal interest are sheared stratified rotating flows where the surface pressure is associated with inertial waves, convection, and other motions, geostrophic or ageostrophic.Although the technique is designed for experiments in which Coriolis effects are strong, it is possible to use reflective imaging for flows at such high Rossby number that Coriolis effects are negligible, and hence this becomes a tool of more general interest in non-rotating fluid dynamics (for example, illuminating surface gravity waves).Examples are given, involving (i) the Taylor–Proudman effect with very slow flows over topography; (ii) quasi-geostrophic and inertial-wave flows over a mountain (f-plane); (iii) inertial waves generated by oscillatory forcing; (iv) Kelvin waves (v) free oscillatory Rossby waves on a polar β-plane; and (vi) stationary waves, blocking, jets and wakes with β-plane zonal flow past a mountain. Movies are available with the online version of the paper.
Publisher
Cambridge University Press (CUP)
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献