Reaction in a scalar mixing layer

Author:

Bilger R. W.,Saetran L. R.,Krishnamoorthy L. V.

Abstract

Reaction in a scalar mixing layer in grid-generated turbulence is studied experimentally by doping half of the flow with nitric oxide and the other half with ozone. The flow conditions and concentrations are such that the chemical reaction is passive and the flow and chemical timescales are of the same order. Conserved scalar theory for such flows is outlined and further developed; it is used as a basis for presentation of the experimental results. Continuous measurements of concentration are limited in their spatial and temporal resolution but capture sufficient of their spectra for adequate second-order correlations to be made. Two components of velocity have been measured simultaneously with hot-wire anemometry. Conserved scalar mixing results, deduced from reacting and non-reacting measurements of concentration, show the independence of concentration level and concentration ratio expected for passive reacting flow. The results are subject to several limitations due to the necessary experimental compromises, but they agree generally with measurements made in thermal mixing layers. Reactive scalar statistics are consistent with the realizability constraints obtainable from conserved scalar theory where such constraints apply, and otherwise are generally found to lie between the conserved scalar theory limits for frozen and very fast chemistry. It is suggested that Toor's (1969) closure for the mean chemical reaction rate could be improved by interpolating between the frozen and equilibrium values for the covariance. The turbulent fluxes of the reactive scalars are found to approximately obey the gradient model but the value of the diffusivity is found to depend on the Damköhler number.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference41 articles.

1. Steffenson, D. M. & Stedman, D. H. 1974 Optimization of the operating parameters of chemiluminescent nitric oxide detectors.Analyt. Chem. 46,1704–1709.

2. Bilger, R. W. 1976b The structure of diffusion flames.Combust. Sci. Technol. 13,155–170.

3. Mudford, N. R. & Bilger, R. W. 1985 Examination of closure models for mean chemical reaction using experimental data for an isothermal turbulent reacting flow In 20th Symp. (Intl) on Combustion ,pp.387–394.The Combustion Institute.

4. Hinze, J. O. 1975 Turbulence,2nd edn. McGraw-Hill.

5. Warhaft, Z. & Lumley, J. L. 1978 An experimental study of the decay of temperature fluctuations in grid generated turbulence.J Fluid Mech. 88,659–684.

Cited by 101 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3