On the motion of a porous sphere in a Stokes flow parallel to a planar confining boundary

Author:

ROY B. C.,DAMIANO E. R.

Abstract

An analysis is presented of the three-dimensional creeping flow in and around a porous sphere, modelled as a generalized Brinkman medium, near a smooth plane where the sphere (i) translates uniformly without rotating in an otherwise quiescent Newtonian fluid, (ii) rotates uniformly without translating in an otherwise quiescent Newtonian fluid, and (iii) is fixed in a shear field, which is uniform in the far field and has a linearly increasing velocity profile with increasing distance from the plane. The linear superposition of these three flow regimes is also considered for the special case of the free translational and rotational motion of a neutrally buoyant porous sphere in a shear field that is uniform in the far field. Exact series solutions to the momentum equations are derived for the velocity and pressure fields in the Brinkman and Stokes-flow regions. Coefficients in the series solutions for each flow regime are determined using recursion relations derived from the continuity equations in the Brinkman and Stokes-flow regions, from the interfacial boundary conditions on the porous spherical surface, and from the no-slip condition on the plane. Results are presented in terms of the drag force on the porous sphere and torque about the sphere centre as a function of the dimensionless clearance distance between the sphere and the rigid plane for several values of the dimensionless hydraulic permeability of the Brinkman medium. The free motion of the neutrally buoyant sphere is calculated by requiring that the net hydrodynamic drag force and torque acting on the sphere vanish. Results for this case are presented in terms of the dimensionless translational and rotational speeds of the porous sphere relative to the far-field shear rate as a function of the dimensionless clearance distance for several values of the dimensionless hydraulic permeability. The work is motivated by insights it offers into the behaviour of porous agglomerates, and by its potential utility in industrial, biological, biophysical, medicinal and environmental applications wherever gas or liquid suspensions of porous agglomerates might arise.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3