The decay of turbulence in thermally stratified flow

Author:

Lienhard V J. H.,Van Atta C. W.

Abstract

The decay of grid-generated turbulence in the presence of strong thermal stratification is studied in a continuously stratified, open-loop wind tunnel at Brunt–Väisälä frequencies up to 2.5s−1. The data include one-point statistical measurements through moments of fourth order and associated power- and cross-spectra. Cross-channel phase measurements are used to analyse the scales of correlation of velocity and temperature. The present data are considerably more coherent than previous salt-stratified data, and the structural form of stratified turbulence is thus more clearly manifested. No internal wave effects are observed at any stage of the decay. Stratified turbulence is found to be a two-scale process dominated by buoyancy forces at large scales of motion and dissipative effects at small scales. The two-scale structure is used to develop universal buoyancy scalings for the decay of the vertical heat flux, the scalar variance, and the molecular dissipation rates, and, in particular, for the vertical velocity decay. Velocity and temperature spectra satisfy universal equilibrium scaling at high wavenumbers, but show buoyancy effects at small wavenumbers. The flow remains isotropic at high wavenumbers over the entire range of turbulent decay studied. Cospectral and phase data are used to validate the two-scale model of the turbulence. The flow may show large-scale restratification while active turbulence persists at smaller scales, so that the vanishing of the vertical transport does not represent extinction of turbulent motion. Additionally, an original universal equilibrium scaling is developed for the cross-spectrum. Lengthscale evolution is measured, and the overturning and buoyancy lengthscales (associated with potential and kinetic energy, respectively) are found to characterize flow development. The role of the Prandtl number is assessed by comparison to previous works, and the Prandtl number is found to have a significant influence upon stratified turbulence evolution.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference36 articles.

1. Stillinger, D. C. , Head, M. J. , Helland, K. N. & Van Atta, C. W. 1983a A closed-loop gravity-driven water channel for density-stratified shear flows.J. Fluid Mech. 131,73–89.

2. Sanderson, R. C. , Hill, J. C. & Herring, J. R. 1987 Transient behavior of a stably stratified homogeneous fluid. In Advances in Turbulence (ed. G. Comte-Bellot & J. Mathieu ),p.184.Springer.

3. Montgomery, R. D. 1974 An experimental study of grid turbulence in a thermally-stratified flow. Doctoral Dissertation,University of Michigan.

4. Britter, R. E. , Hunt, J. C. , Marsh, G. L. & Snyder, W. S. 1983 The effect of stable stratification on turbulent diffusion and the decay of grid turbulence.J. Fluid Mech. 127,27–44.

5. Deissler, R. G. 1962 Turbulence in the presence of a vertical body force and temperature gradient.J. Geophys. Res. 67,3049–3062.

Cited by 155 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3