A numerical investigation of resonant interactions in adverse-pressure-gradient boundary layers

Author:

LIU CHONGHUI,MASLOWE S. A.

Abstract

We present direct numerical simulations of the spatial development of normal mode perturbations to boundary layers with Falkner–Skan velocity profiles. Values of the pressure gradient parameter considered range from very small, i.e. nearly flat-plate conditions, to relatively large values corresponding to incipient separation. In almost all cases, we find that the most effective perturbation is one composed of a plane wave and a pair of oblique waves inclined at equal and opposite angles to the primary flow direction. The frequency of the oblique waves is half that of the fundamental plane wave and because the conditions for resonance are satisfied exactly, all modes share a common critical layer, thus facilitating a strong interaction.The oblique waves initially undergo a parametric type of subharmonic resonance, but in accordance with recent analyses of non-equilibrium critical layers, the system subsequently becomes fully coupled. From that point on, the amplification of all modes, including the plane wave, substantially exceeds the predictions of linear stability theory. Good agreement is obtained with the experimental small pressure gradient results of Corke & Gruber (1996). Our growth rates are slightly larger flowing to slight differences in initial conditions (e.g. the angle of inclination of the oblique waves).The spectral element method was used to discretize the Navier–Stokes equations and the preconditioned conjugate gradient method was used to solve the resulting system of algebraic equations. At the inflow boundary, Orr–Sommerfeld modes were employed to provide the initial forcing, whereas the buffer domain technique was used at the outflow boundary to prevent convective wave reflection or upstream propagation of spurious information.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3