Nonlinear interaction between a boundary layer and a liquid film

Author:

VLACHOMITROU M.,PELEKASIS N.

Abstract

The nonlinear stability of a laminar boundary layer that flows at high Reynolds number (Re) above a plane surface covered by a liquid film is investigated. The basic flow is considered to be nearly parallel and the simulations are based on triple deck theory. The overall interaction problem is solved using the finite element methodology with the two-dimensional B-cubic splines as basis functions for the unknowns in the boundary layer and the film and the one-dimensional B-cubic splines as basis functions for the location of the interface. The case of flow above an oscillating solid obstacle is studied and conditions for the onset of Tollmien–Schlichting (TS) waves are recovered in agreement with the literature. The convective and absolute nature of TS and interfacial waves is captured for gas-film interaction, and the results of linear theory are recovered. The evolution of nonlinear disturbances is also examined and the appearance of solitons, spikes and eddy formation is monitored on the interface, depending on the relative magnitude of Froude and Weber numbers (Fr, We), and the gas to film density and viscosity ratios (ρ/ρw, μ/μw). For viscous films TS waves grow on a much faster time scale than interfacial waves and their effect is essentially decoupled. The influence of interfacial disturbances on short-wave growth in the bulk of the boundary layer bypassing classical TS wave development is captured. For highly viscous films for which inertia effects can be neglected, e.g. aircraft anti-icing fluids, soliton formation is obtained with their height remaining bounded below a certain height. When water films are considered interfacial waves exhibit unlimited local growth that is associated with intense eddy formation and the appearance of finite time singularities in the pressure gradient.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference56 articles.

1. Asymptotic Theory of Separated Flows

2. Two-dimensional disturbance travel, growth and spreading in boundary layers

3. Spherical capsules in three-dimensional unbounded Stokes flows: effect of the membrane constitutive law and onset of buckling

4. Hendrickson G. S. & Hill E. G. Effects of aircraft de-anti-icing fluids on airfoil characteristics, von Karman Inst. for Fluid Dynamics Lecture Series, Influence of Environmental factors on aircraft performance. von Karman Inst. for Fluid Dynamics, Brussels, Belgium, Feb. 16–19, 1987.

5. FLOW THROUGH CONSTRICTED OR DILATED PIPES AND CHANNELS: PART 1

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3