Instabilities of buoyancy-driven coastal currents and their nonlinear evolution in the two-layer rotating shallow-water model. Part 1. Passive lower layer

Author:

GULA J.,ZEITLIN V.

Abstract

Buoyancy-driven coastal currents, which are bounded by a coast and a surface density front, are ubiquitous and play essential role in the mesoscale variability of the ocean. Their highly unstable nature is well known from observations, laboratory and numerical experiments. In this paper, we revisit the linear stability problem for such currents in the simplest reduced-gravity model and study nonlinear evolution of the instability by direct numerical simulations. By using the collocation method, we benchmark the classical linear stability results on zero-potential-vorticity (PV) fronts, and generalize them to non-zero-PV fronts. In both cases, we find that the instabilities are due to the resonance of frontal and coastal waves trapped in the current, and identify the most unstable long-wave modes. We then study the nonlinear evolution of the unstable modes with the help of a new high-resolution well-balanced finite-volume numerical scheme for shallow-water equations. The simulations are initialized with the unstable modes obtained from the linear stability analysis. We found that the principal instability saturates in two stages. At the first stage, the Kelvin component of the unstable mode breaks, forming a Kelvin front and leading to the reorganization of the mean flow through dissipative and wave–mean flow interaction effects. At the second stage, a new, secondary unstable mode of the Rossby type develops on the background of the reorganized mean flow, and then breaks, forming coherent vortex structures. We investigate the sensitivity of this scenario to the along-current boundary and initial conditions. A study of the same problem in the framework of the fully baroclinic two-layer model will be presented in the companion paper.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3