Rotating free-shear flows. Part 2. Numerical simulations

Author:

Métais Olivier,Flores Carlos,Yanase Shinichiro,Riley James J.,Lesieur Marcel

Abstract

The three-dimensional dynamics of the coherent vortices in periodic planar mixing layers and in wakes subjected to solid-body rotation of axis parallel to the basic vorticity are investigated through direct (DNS) and large-eddy simulations (LES). Initially, the flow is forced by a weak random perturbation superposed on the basic shear, the perturbation being either quasi-two-dimensional (forced transition) or three-dimensional (natural transition). For an initial Rossby number Ro(i), based on the vorticity at the inflexion point, of small modulus, the effect of rotation is to always make the flow more two-dimensional, whatever the sense of rotation (cyclonic or anticyclonic). This is in agreement with the Taylor–Proudman theorem. In this case, the longitudinal vortices found in forced transition without rotation are suppressed.It is shown that, in a cyclonic mixing layer, rotation inhibits the growth of three-dimensional perturbations, whatever the value of the Rossby number. This inhibition exists also in the anticyclonic case for |Ro(i)| ≤ 1. At moderate anticyclonic rotation rates (Ro(i) < −1), the flow is strongly destabilized. Maximum destabilization is achieved for |Ro(i) ≈ 2.5, in good agreement with the linear-stability analysis performed by Yanase et al. (1993). The layer is then composed of strong longitudinal alternate absolute vortex tubes which are stretched by the flow and slightly inclined with respect to the streamwise direction. The vorticity thus generated is larger than in the nonrotating case. The Kelvin–Helmholtz vortices have been suppressed. The background velocity profile exhibits a long range of nearly constant shear whose vorticity exactly compensates the solid-body rotation vorticity. This is in agreement with the phenomenological theory proposed by Lesieur, Yanase & Métais (1991). As expected, the stretching is more efficient in the LES than in the DNS.A rotating wake has one side cyclonic and the other anticyclonic. For |Ro(i)| ≤ 1, the effect of rotation is to make the wake more two-dimensional. At moderate rotation rates (|Ro(i)| > 1), the cyclonic side is composed of Kármán vortices without longitudinal hairpin vortices. Karman vortices have disappeared from the anticyclonic side, which behaves like the mixing layer, with intense longitudinal absolute hairpin vortices. Thus, a moderate rotation has produced a dramatic symmetry breaking in the wake topology. Maximum destabilization is still observed for |Ro(i)| ≈ 2.5, as in the linear theory.The paper also analyses the effect of rotation on the energy transfers between the mean flow and the two-dimensional and three-dimensional components of the field.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference30 articles.

1. Johnston, J. P. , Halleen, R. M. , & Lezius, D. K. 1972 Effects of spanwise rotation on the structure of two-dimensional fully developped turbulent channel flow.J. Fluid Mech. 56,533–557.

2. Bartello, P. , Métais, O. & Lesieur, M. 1994 Coherent structures in rotating three-dimensional turbulence.J. Fluid Mech. 273,1–29.

3. Hart, J. E. 1971 Instability and secondary motion in a rotating channel flow.J. Fluid Mech. 45,341–351.

4. Comte, P. , Lesieur, M. & Lamballais, E. 1992 Large- and small-scale stirring of vorticity and a passive scalar in a 3-D temporal mixing layer.Phys. Fluids A4,2761–2778.

5. Rothe, P. H. & Johnston, J. P. 1979 Free shear layer behaviour in rotating systems.Trans. ASME: J. Fluids Engng 101,117–119.

Cited by 44 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3